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Abstract
The spatial evolution of vector electromagnetic fields in bianisotropic
cylindrically symmetric structures is studied. We introduce evolution operators
(characteristic matrices), impedance tensors, reflection and transmission
operators of cylindrical beams which are convenient for describing waves in
layered media. We predict the existence of fractional Bessel beams with integer
topological charge and cylindrically symmetric beams which can be presented
as the product of the Bessel function and the exponent. We investigate energy
and polarization characteristics of such beams.

PACS numbers: 41.85.−p, 78.20.Ci

1. Introduction

The study of electromagnetic fields with cylindrical symmetry has been a distinct area of optics
for nearly 20 years. An example of a cylindrical beam is a Bessel beam [1–4]. Nondiffracting
Bessel beams possess specific properties, such as the ring-shaped angular spectrum and the
beam reconstruction. Nowadays, a topical subject of research is the investigation of higher-
order fractional Bessel beams generated from a spatial light modulator [5–8]. The existence
of such beams is connected with azimuthal phase variation at non-integer multiples of 2π . A
fractional Bessel beam has an intensity distribution with opening slit in the ring pattern. By
changing the Bessel beam hologram from the fractional order to the integer one, the opening
slit can be closed. Such opening and closing of the slit is expected to allow the separation of
microparticles. Another type of cylindrical beams are the Bessel–Gauss beams which exhibit
the properties of both nondiffracting and Gauss beams. Usually, the scalar Bessel–Gauss fields
in the paraxial approximation are studied, although there are papers in which vector [9, 10]
and nonparaxial [11] beams are analysed. Vector beams can be generated in few-mode fibres
excited by Laguerre–Gauss beams [12]. The Bessel–Gauss beams are applied in microscopy,
lithography, material processing, microellipsometry and spectroscopy.
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In this work we consider cylindrically symmetric beams, which appear as solutions of
the Maxwell equations in bianisotropic media. Bessel and Bessel–Gauss beams in anisotropic
media have been already investigated. In the papers [13, 14] the transformation of the Bessel
beam order in uniaxial and biaxial crystals was predicted. The authors of [14] showed
that almost the whole energy of the input Bessel beam of the zero order can be converted
into the Bessel beam of the second order. In [15, 16], linearly polarized cylindrically
symmetric fields (Bessel, Bessel–Gauss and Laguerre–Gauss beams) in uniaxial crystals were
studied.

This paper is organized as follows. Section 2 is devoted to a brief summary of the
operator method for cylindrical electromagnetic waves which was developed in [17–19]
and applied there for describing the modes in optical fibres. Using the operator solutions,
in section 3 vector cylindrical beams in bianisitropic media are formed. In section 4 the
impedance tensors, spatial evolution operators (classical propagators, characteristic matrices),
reflection and transmission operators for cylindrical beams in multi-layered media are
determined. Examples of cylindrically symmetric beams are considered in section 5. In
particular, we investigate the energy and polarization characteristics of the integer and
fractional Bessel beams, waves with radial dependence in the form of the product of the
Bessel function and the exponent. In section 6, we present the main results obtained in the
paper and possible directions for further investigations.

2. Cylindrical waves in bianisotropic media

We consider the electromagnetic waves satisfying the classical Maxwell equations in
bianisotropic media with constitutive equations

D = εE + αH B = κE + µH (1)

where H,E,B and D are the strengths and inductions of the electric and magnetic fields. The
dielectric permittivity tensor ε, magnetic permeability tensor µ and gyration pseudotensors α,
κ can be decomposed with dyads made up on basis of sorts of cylindrical coordinates (r, ϕ, z)

with constant coefficients:

ξ =
3∑

i,j=1

ξij ei (ϕ) ⊗ ej (ϕ) (2)

where ξ is one of the tensors ε, µ, α, κ; e1 = er (ϕ),e2 = eϕ(ϕ),e3 = ez are the basis vectors
of cylindrical coordinates; ei ⊗ej is the elementary dyad. Such symmetry of the media under
investigation allows us to divide the variables into electric and magnetic field strengths as
follows, (

H(r, t)

E(r, t)

)
= exp(iβz + iνϕ − iωt)

(
H(r, ϕ)

E(r, ϕ)

)
(3)

where β is the longitudinal wavenumber, ω is the wave frequency, ν is an integer number.
Hence, Maxwell’s equations can be presented as the system of the ordinary differential
equations of the first order [18]:

dW (r)

dr
= ikM(r)W (r) (4)
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where

M =
(

A B

C D

)
W =

(
H t

Et

)

A = i

kr
eϕ ⊗ eϕ + e×

r αI + e×
r εer ⊗ v3 + e×

r (u + αer ) ⊗ v1

B = e×
r εI + e×

r εer ⊗ v4 + e×
r (u + αer ) ⊗ v2

C = −e×
r µI − e×

r µer ⊗ v1 + e×
r (u − κer ) ⊗ v3

D = i

kr
eϕ ⊗ eϕ − e×

r κI − e×
r µer ⊗ v2 + e×

r (u − κer ) ⊗ v4.

(5)

Et = IrE and H t = IrH are the tangential field components, Ir = 1 − er ⊗ er is the
projection operator onto the plane orthogonal to the unit vector er ,e

×
r is the tensor dual to the

vector er [20, 21], k = ω/c. Tangential components include two projections, one of which
is longitudinal projection (Ez,Hz) and another is the azimuthal one (Eϕ,Hϕ). Tangential
components enable us to restore the total fields as(

H

E

)
= V

(
H t

Et

)
V =

(
I + er ⊗ v1 er ⊗ v2

er ⊗ v3 I + er ⊗ v4

)
(6)

where the vectors v1,v2,v3,v4,u are equal to

v1 = δr(κrrerαIr − εrrerµIr − κrru) v2 = δr(κrrerεIr − εrrerκIr − εrru)

v3 = δr(αrrerµIr − µrrerαIr + µrru) v4 = δr(αrrerκIr − µrrerεIr + αrru)

u = (β/k)eϕ − ν/(kr)ez δr = (εrrµrr − αrrκrr )
−1

εrr = erεer µrr = erµer αrr = erαer κrr = erκer .

(7)

Matrix M can be written as a power expansion of 1/r:

M = M(0) +
1

r
M(1) +

1

r2
M(2) (8)

where M(0),M(1),M(2) are the constant matrices. Then we will present the tangential field
components W and block matrix M as decomposition of the basis vectors of cylindrical
coordinates

W = �wϕeϕ + �wzez �wϕ = eϕW =
(

eϕH

eϕE

)
=

(
Hϕ

Eϕ

)
�wz =

(
Hz

Ez

)

M = Mzzez ⊗ ez + Mzϕez ⊗ eϕ + Mϕzeϕ ⊗ ez + Mϕϕeϕ ⊗ eϕ

Mzz = ezMez =
(

ezAez ezBez

ezCez ezDez

)
=

(
Azz Bzz

Czz Dzz

)
Mzϕ = ezMeϕ Mϕz = eϕMez Mϕϕ = eϕMeϕ.

Here Mzz,Mzϕ,Mϕz and Mϕϕ are the matrices of the two-dimensional space. For
bianisotropic media under consideration the constant matrices M(0),M(1),M(2) are equal
to

M(0) = M(0)
zz ez ⊗ ez + M(0)

zϕ ez ⊗ eϕ + M(0)
ϕz eϕ ⊗ ez + M(0)

ϕϕ eϕ ⊗ eϕ

M(1) = M(1)
zz ez ⊗ ez + M(1)

ϕz eϕ ⊗ ez + M(1)
ϕϕ eϕ ⊗ eϕ M(2) = M(2)

ϕz eϕ ⊗ ez.
(9)

From equation (4) it follows the differential equation of the second order

�w′′
z +

(
P (0) +

1

r
P (1)

)
�w′

z +

(
Q(0) +

1

r
Q(1) +

1

r2
Q(2)

)
�wz = 0 (10)
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where the prime denotes the r-derivative. Constant 2 × 2 matrices P (0), P (1),Q(0),Q(1),Q(2)

equal

P (0) = −ik
(
M(0)

zz + M(0)
zϕ M(0)

ϕϕ M(0)−1
zϕ

)
P (1) = −ik

(
M(1)

zz + M(0)
zϕ M(1)

ϕϕ M(0)−1
zϕ

)
Q(0) = k2

(
M(0)

zϕ M(0)
ϕz − M(0)

zϕ M(0)
ϕϕ M(0)−1

zϕ M(0)
zz

)
Q(1) = k2

(
M(0)

zϕ M(1)
ϕz − M(0)

zϕ M(1)
ϕϕ M(0)−1

zϕ M(0)
zz − M(0)

zϕ M(0)
ϕϕ M(0)−1

zϕ M(1)
zz

)
Q(2) = ikM(1)

zz + k2M(0)
zϕ M(2)

ϕz − k2M(0)
zϕ M(1)

ϕϕ M(0)−1
zϕ M(1)

zz .

(11)

Generally, the solution of equation (10) is the linear combination of four independent
solutions:

�wz(r) =
4∑

j=1

Tj (r)cj �aj (12)

where Tj (r) are the solutions expressed by the 2 × 2 matrices, �aj are arbitrary vectors, cj

are constants. On the basis of the constants cj the vectors of the three-dimensional space
c1 = c1ez + c2eϕ and c2 = c3ez + c4eϕ are introduced, then the tangential field components
W take the form

W =
(

η1c1

ζ1c1

)
+

(
η2c2

ζ2c2

)
(13)

where the tensors η1, η2, ζ1, ζ2 equal

η1 = �e1T1 �a1ez ⊗ ez + �e1ẐT1 �a1eϕ ⊗ ez + �e1T2 �a2ez ⊗ eϕ + �e1ẐT2 �a2eϕ ⊗ eϕ

η2 = �e1T3 �a3ez ⊗ ez + �e1ẐT3 �a3eϕ ⊗ ez + �e1T4 �a4ez ⊗ eϕ + �e1ẐT4 �a4eϕ ⊗ eϕ

ζ1 = �e2T1 �a1ez ⊗ ez + �e2ẐT1 �a1eϕ ⊗ ez + �e2T2 �a2ez ⊗ eϕ + �e2ẐT2 �a2eϕ ⊗ eϕ

ζ2 = �e2T3 �a3ez ⊗ ez + �e2ẐT3 �a3eϕ ⊗ ez + �e2T4 �a4ez ⊗ eϕ + �e2ẐT4 �a4eϕ ⊗ eϕ.

(14)

Here we use the differential operator

Ẑ = M−1
zϕ

(
1

ik

d

dr
− Mzz

)

and unit vectors of the two-dimensional space

�e1 =
(

1
0

)
�e2 =

(
0
1

)
.

The waves (13) are called cylindrical waves, because their amplitudes depend only on
the radial coordinate r. The azimuthal coordinate ϕ enters only into the basis vectors of
cylindrical coordinates which determine the vector structure of electromagnetic field. During
the spatial evolution of the waves the basis vectors are considered to be constant. In general, in
a bianisotropic medium there are four cylindrical waves which correspond to the independent
solutions for the longitudinal field components Tj . The tangential field components are written
using the tensors η and ζ , each of which is formed by the couple of solutions T. Such notation
is connected with the plane wave analogy. Four plane waves can be also separated: one couple
of waves is forward and another is backward propagating.
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3. Vector cylindrical beams

Cylindrical beams propagating along the z axis are the exact solutions of the Maxwell equations
in cylindrical coordinates (r, ϕ, z), which are limited at any point of the beam cross section
(i.e. both for r = 0 and r = ∞). Undoubtedly, such beams are vector fields. In this section,
we will consider the general principles for theoretically constructing the beams in complex
media of the form (2), the particular cases of solutions in which being the Bessel beams.

In section 2, the general solutions were obtained which are expressed by the 2 ×
2-matrices T for longitudinal field components, and tensors η and ζ for tangential components.
The tangential components H t and Et are convenient for describing circular fibre modes,
because they are continuous on the cylindrical interface between two media. It is well known
that such waves as waveguide modes are nondiffracting fields. This result follows from
the structure of solution E(r) = E(x, y) exp(iβz), in which longitudinal and transverse
coordinates are divided, and the transversal intensity distribution is an invariant during
propagation. When we wish to form beam solutions, we should take into account some
important features. First, we consider medium of the form (2) which is infinite in the transverse
cross section. That is why the tangential field components H t and Et are improper for the
use and it is necessary to introduce new transverse field components which lie in the plane
z = const and are continuous in the plane interfaces. Second, the solutions should be chosen
correctly. The longitudinal field components are determined by the four solutions Tj , only two
of which are usually applied for describing the beam. The remaining solutions give infinite
field strengths in the beam centre or at infinity. For example, in isotropic medium there are
some sets of cylindrically symmetric solutions T which are expressed in terms of the Bessel
functions of the first and second kinds, or modified Bessel functions, or Hankel functions. But
only the Bessel functions of the first kind are solutions for beams propagating in the infinite
medium.

Let us suppose that a cylindrical beam is formed by the couple of solutions T1, T2. Then
in the wave superposition (13) we should assume c2 = 0 to exclude nonphysical solutions.
The tangential field components of the beam take the form(

H t

Et

)
=

(
η1c1

ζ1c1

)
≡

(
η1

ζ1

)
c1.

From the formulae (14) we see that each of the tensors η and ζ can be separated into two
parts which are related to the solutions T1 and T2, respectively. We will denote them as

η(1) = �e1T1 �a1ez ⊗ ez + �e1ẐT1 �a1eϕ ⊗ ez η(2) = �e1T2 �a2ez ⊗ eϕ + �e1ẐT2 �a2eϕ ⊗ eϕ

ζ (1) = �e2T1 �a1ez ⊗ ez + �e2ẐT1 �a1eϕ ⊗ ez ζ (2) = �e2T2 �a2ez ⊗ eϕ + �e2ẐT2 �a2eϕ ⊗ eϕ.

Then the tangential field components are written as the following superposition,(
H t

Et

)
=

(
η(1) + η(2)

ζ (1) + ζ (2)

)
c1 = c1

(
η(1)ez

ζ (1)ez

)
+ c2

(
η(2)eϕ

ζ (2)eϕ

)
(15)

where c1 = c1ez, c2 = c1eϕ . Each of the waves (with superscript 1 or 2) is independent:
for c2 = 0 the first wave propagates and vice versa. The phase factor exp(iβz), which is the
same for all fibre solutions, takes different values for each independent wave, i.e. the waves
are characterized by the longitudinal wavenumbers β1 and β2. Therefore, the field strengths
of a cylindrically symmetric beam equal(

H(r)

E(r)

)
= exp(iνϕ + iβ1z)V (β1)

(
η(1)ez

ζ (1)ez

)
c1 + exp(iνϕ + iβ2z)V (β2)

(
η(2)eϕ

ζ (2)eϕ

)
c2 (16)
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where V is the matrix (6). Further, we introduce the initial field vector in the transverse cross
section of the beam a = c1er + c2eϕ and write the electric and magnetic fields as(

H(r)

E(r)

)
= eiνϕ

[
eiβ1zV (β1)

(
η(1)ez ⊗ er

ζ (1)ez ⊗ er

)
+ eiβ2zV (β2)

(
η(2)eϕ ⊗ eϕ

ζ (2)eϕ ⊗ eϕ

)]
a. (17)

We will need transverse field components below: H⊥ = IzH and ez × E, where
Iz = 1 −ez ⊗ez is the projection operator onto the plane normal to the vector ez. Taking into
account the form of the matrix V , the transverse components can be expressed by means of
planar tensors τ and σ (for a planar tensor τ the equality τIz = Izτ = τ holds true):(

H⊥
ez × E

)
= eiνϕ

(
τ

σ

)
a (18)

where

τ = eiβ1zf 1(r, ϕ) ⊗ er + eiβ2zf 2(r, ϕ) ⊗ eϕ

σ = eiβ1zg1(r, ϕ) ⊗ er + eiβ2zg2(r, ϕ) ⊗ eϕ.
(19)

Vectors f and g equal

f 1 = (eϕη(1)ez)eϕ + (v1(β1)η
(1)ez + v2(β1)ζ

(1)ez)er

f 2 = (eϕη(2)eϕ)eϕ + (v1(β2)η
(2)eϕ + v2(β2)ζ

(2)eϕ)er

g1 = −(eϕζ (1)ez)er + (v3(β1)η
(1)ez + v4(β1)ζ

(1)ez)eϕ

g2 = −(eϕζ (2)eϕ)er + (v3(β2)η
(2)eϕ + v4(β2)ζ

(2)eϕ)eϕ.

(20)

It is obvious that each independent wave itself is diffraction free. The superposition of
the fields with β1 = β2 is nondiffracting, too. The beam diverges for the superposition with
different longitudinal wavenumbers β1 �= β2.

The time-averaged Poynting vector of the beam in the direction of the unit vector n is
calculated according to the formula

Sn = c

16π
(H∗ E∗)

(
0 n×

−n× 0

)(
H

E

)
. (21)

By substituting the cylindrical coordinate basis vectors instead of n one can find radial,
azimuthal and longitudinal beam energy flux components. It should be noted that the
longitudinal component Sz can be obtained using only transverse electric and magnetic fields.

4. Reflection and transmission operators for cylindrical beams

4.1. Impedance tensors and evolution operators

In a number of problems (for instance, for investigating the wave propagation in layered
media) the evolution operators and impedance tensors are found to be useful. Here we will
introduce such operators for cylindrical beams under consideration.

The impedance tensor γ satisfies the equation ez × E = γH⊥ and equals

γ = στ− (22)

or

γ = 1

(f 1 × f 2)
2

[
g1 ⊗ (−f×2

2 f 1

)
+ g2 ⊗ (−f×2

1 f 2

)]
. (23)
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Further, we will find the link between the amplitudes of electric and magnetic fields
during beam propagation in a bianisotropic medium. The transverse field components can be
presented as superposition of forward and backward beams:(

H⊥
ez × E

)
= eiνϕ

[(
τ

σ

)
a +

(
τ ′

σ ′

)
a′

]
. (24)

A backward cylindrical beam propagates in −z direction and is determined by tensors τ ′, σ ′, γ ′

which are obtained from τ , σ , γ by means of the sign variation β1,2 → −β1,2. From the
definition of the evolution operator(

H⊥(z)

ez × E(z)

)
= �z

z0

(
H⊥(z0)

ez × E(z0)

)
(25)

we can write

�z
z0

= S(z)S−(z0) (26)

where

S(z) =
(

τ τ ′

σ σ ′

)
.

The evolution operator and impedance tensor depend on the radial r and angular ϕ coordinates,
although it is not indicated in the notation. As we will see below, the transverse coordinates in
these operators determine only polarization vectors and do not influence the beam reflection
and transmission coefficients.

4.2. Boundary conditions: beam reflection and transmission operators

Let us consider the plane interface z = 0 between two media. The incident and reflected beams
propagate in medium 1, and the refracted beam moves in medium 2. The transverse fields are
expressed by the formula (18). In notation of the fields of incident, reflected and refracted
beams we will use terms without prime, with one prime and with two primes, respectively.
Then the continuity conditions for transverse field components at the interface take the form

eiνϕ

(
τ

σ

)
a + eiν ′ϕ

(
τ ′

σ ′

)
a′ = eiν ′′ϕ

(
τ ′′

σ ′′

)
a′′. (27)

Since the functions eiνϕ are orthogonal, it follows from the boundary conditions that
ν = ν ′ = ν ′′. Magnetic field strengths can be written in terms of the vector functions f
(similarly for electric field):

f 1c1 + f 2c2 + f ′
1c

′
1 + f ′

2c
′
2 = f ′′

1c
′′
1 + f ′′

2c
′′
2 (28)

where a = c1er + c2eϕ . Vectors f depend on the transverse coordinates, mainly on the radial
coordinate, since only orts er and eϕ include the azimuth. Expression (28) should hold true
for any coordinate r and constants c1, c2, c

′
1, c

′
2, c

′′
1, c

′′
2 . Therefore, some restrictions on the

beams in media 1 and 2 are applied.
The eigenpolarizations of the incident wave f 1 and f 2 are noncollinear; they determine

the basis in the plane (r, ϕ). Vectors of the reflected and refracted beams can be decomposed
in this basis with some coefficients, which generally depend on the radial coordinate. If the
numbers c in (28) are the same for any r, then the decomposition coefficients a and b should
be constant to satisfy the boundary conditions (27):

f ′
1(r) = a′

1f 1(r) + a′
2f 2(r) f ′

2(r) = b′
1f 1(r) + b′

2f 2(r)

f ′′
1(r) = a′′

1f 1(r) + a′′
2f 2(r) f ′′

2(r) = b′′
1f 1(r) + b′′

2f 2(r)
(29)
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i.e. only wave polarizations depend on r, while the refraction and transmission coefficients are
the same at any point of the beam cross section. For nonzero coefficients a and b (polarizations
f ′ and f ′′ include both vectors f 1 and f 2) the equality T1 = T2 = T ′

1 = T ′
2 = T ′′

1 = T ′′
2

should hold true to satisfy expressions (29). If a′
2 = a′′

2 = b′
1 = b′′

1 = 0, then the waves
with different polarizations reflect and refract independently of one another and it should be
T1 = T ′

1 = T ′′
1 , T2 = T ′

2 = T ′′
2 to satisfy conditions (29).

One often chooses the beam corresponding to the solutions T1 = T2 = F(r)1̂ as the
incident wave, where F is a scalar function. For example, it can be a Bessel beam, two
orthogonal polarizations of which are characterized by the equal radial wavenumbers. Then
the reflected and refracted waves have the same solutions T ′

1 = T ′
2 = T ′′

1 = T ′′
2 = F(r)1̂. In

the case of the Bessel beams this condition becomes the condition of the radial wavenumber
continuity at the interface.

It should be noted that the equality of the integer numbers ν and solutions T for cylindrical
beams at the interface between the media 1 and 2 is the analogue of the equality of the phase
factors exp(iψ) for the incident, reflected and refracted plane waves. The phases of the
plane waves always can be chosen equal, because they are determined by the single wave
parameter—the projection of the wavevector onto the interface. Solutions T in different media
cannot always be equal to one another, since they include prescribed parameters of the medium.
That is why conditions (29) do not fulfil often and one should use more general continuity
relationships which contain the superposition of the reflected and transmitted waves. Each
partial wave is an exact solution of the Maxwell equations in the appropriate medium. The
boundary conditions take the form

(
τ(r)

σ (r)

)
a +

∞∑
p=1

(
τ ′
p(r)

σ ′
p(r)

)
a′

p =
∞∑

p=1

(
τ ′′
p(r)

σ ′′
p (r)

)
a′′

p. (30)

If the sets of tensor functions τ ′
p and τ ′′

p form the complete system, then using them we can
write an arbitrary function and satisfy the boundary conditions. To determine the constant
vectors a′

p,a′′
p one can decompose r-depending functions into the set of orthogonal functions

(exponents or Bessel functions).
Further we will obtain reflection and transmission operators of vector beams. We will

derive the operators for the case, when the boundary conditions have the form (27), i.e.
conditions (29) hold true. The special cases of such beams are the vector Bessel beams in
complex media. Let us consider the incidence of the cylindrical beam from the medium with
tensor parameters ε(0), µ(0), α(0), κ(0) onto the bianisotropic n-layered structure, every layer
being characterized by the values ε(j), µ(j), α(j), κ(j), j = 1, . . . , n. Then the beam falls into
the medium with ε(n+1), µ(n+1), α(n+1), κ(n+1). We solve the boundary problem using evolution
operators and impedance tensors introduced above. The transverse field components at the
interfaces z = z0 and z = zn are connected with characteristic matrix of n layers which is
equal to the product of evolution operators for each layer:

�zn

z0
= �zn

zn−1
�zn−1

zn−2
· · ·�z1

z0
. (31)

From the boundary conditions we have(
Iz

γn+1

)
H⊥n+1(zn) = �zn

z0

[(
Iz

γ0

)
H⊥0(z0) +

(
Iz

γ ′
0

)
H ′

⊥0(z0)

]
(32)

where γ0, γn+1, γ
′
0 are the surface impedance tensors of the incident H⊥0, transmitted H⊥n+1

and reflected H ′
⊥0 waves, respectively. We introduce the reflection and transmission operators
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as H ′
⊥0 = RH⊥0 and H⊥n+1 = DH⊥0, then they equal [22]

R =
[
(−γn+1 Iz)�

zn

z0

(
Iz

γ ′
0

)]− [
(γn+1 −Iz)�

zn

z0

(
Iz

γ0

)]

D =
[
(−γ ′

0 Iz)�
z0
zn

(
Iz

γn+1

)]−
(γ0 − γ ′

0).

(33)

Thus, the reflection and transmission operators can be calculated using the tensor (matrix)
procedures. Reflection and transmission operators allow us to find the amplitudes of the
reflected and transmitted fields without dividing them into the eigenwaves.

5. Vector cylindrically symmetric beams in bianisotropic media

For different media we will obtain a number of exact solutions of Maxwell’s equations, such
as Bessel beams of an integer and fractional order, and cylindrical beams. To determine the
transverse field components of the beam in the infinite medium one should substitute the planar
tensors η, ζ and vectors v1,v2,v3,v4 into expression (18). Incidentally, from (18) it can be
easily seen that the fields of all the beams under consideration have an integer topological
charge ν, but the solutions may include the Bessel functions of the fractional order.

5.1. Bessel beams of integer order

Let us consider the propagation of the Bessel beam in ez direction in the homogeneous
bianisotropic medium ε = ε1Iz + ε2ez ⊗ ez, µ = µ1Iz + µ2ez ⊗ ez, α = κ = iχe×

z . Tensors
η = η(1) + η(2), ζ = ζ (1) + ζ (2) can be presented as follows,

η = Jν(q1r)

(
ez − µ2ν(β − ikχ)

µ1q
2
1 r

eϕ

)
⊗ ez +

ikε2J
′
ν(q2r)

q2
eϕ ⊗ eϕ

ζ = − ikµ2J
′
ν(q1r)

q1
eϕ ⊗ ez + Jν(q2r)

(
ez − ε1ν(β + ikχ)

ε1q
2
2 r

eϕ

)
⊗ eϕ

(34)

where q2
1 = k2ε1µ2 − (k2χ2 +β2)µ2/µ1, q

2
2 = k2ε2µ1 − (k2χ2 +β2)ε2/ε1. The values q1 and

q2 are called the transversal (radial) wavenumbers. Usually, one assumes q1 = q2 = q and
interconnects this parameter with the cone angle for the wavevector of the Bessel beam. The
radial wavenumber q is determined by the initial conditions, as the projection of the wavevector
of the plane wave onto the interface between two media. For each beam polarization (TE and
TM, respectively) the longitudinal wavenumbers equal

β1 =
√

k2ε1µ1 − k2χ2 − q2µ1/µ2 β2 =
√

k2ε1µ1 − k2χ2 − q2ε1/ε2.

Taking into account the expressions

v1 = v4 = 0 v2 = ikχ − β

kµ1
eϕ +

ν

kµ1r
ez v3 = ikχ + β

kε1
eϕ − ν

kε1r
ez

from (18) we find the planar tensors τ and σ describing the transverse electric and magnetic
field components of the Bessel beam:

τ = µ2(β1 − ikχ)

µ1q
eiβ1zb ⊗ er +

kε2

q
eiβ2z(ez × b) ⊗ eϕ

σ = kµ2

q
eiβ1zb ⊗ er +

ε2(β2 + ikχ)

ε1q
eiβ2z(ez × b) ⊗ eϕ

(35)
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where

b = iJ ′
ν(qr)er − ν

qr
Jν(qr)eϕ. (36)

Bessel beam in the considered bianisotropic medium is characterized by two orthogonal
polarizations b and ez × b. These polarizations are quasi-circular and become circular
polarizations in the paraxial approximation.

The impedance tensor can be easily calculated using the formula (23); it equals

γ = 1

b2

[
kµ1

β1 − ikχ
b ⊗ b +

β2 + ikχ

kε1
(ez × b) ⊗ (ez × b)

]
. (37)

In the impedance tensor of the backward Bessel beam one need to change the sign of
the propagation constant β1,2 → −β1,2. Bianisotropic media possess the property of
nonreciprocity, i.e. the forward and backward beams propagate in different ways. This is
the distinctive feature of a gyrotropic medium. In anisotropic medium (χ = 0) the impedance
tensor of the backward Bessel beam equals γ ′ = −γ . The case of isotropic medium is realized
for ε1 = ε2, µ1 = µ2, χ = 0 and gives well-known relationships.

The evolution operator (25) of the beam in the bianisotropic medium is equal to

�z
0 =

(
cos(β1z)Iz

β1−ikχ

kµ1
sin(β1z)Iz

kµ1

β1−ikχ
sin(β1z)Iz cos(β1z)Iz

)
b ⊗ b

b2

+

(
cos(β2z)Iz

kε1
β2+ikχ

sin(β2z)Iz

β2+ikχ

kε1
sin(β2z)Iz cos(β2z)Iz

)
(ez × b) ⊗ (ez × b)

b2 . (38)

The evolution operator is divided into two parts, each of which contains the evolution operator
for one of the two orthogonal polarizations. Therefore, we can use 2 × 2 matrices to describe
the evolution of independent waves instead of the block 4 × 4 matrices. Evolution operator
for plane waves has the same form. The single distinction is in vector b which is constant for
plane waves and depends on the point in the beam cross section for cylindrically symmetric
waves.

The solutions for Bessel beams in considered bianisotropic media are expressed by means
of two orthogonal vectors b and ez × b. Therefore, the conditions (29) for the incident,
reflected and refracted waves are satisfied, and we can apply formulae for the reflection and
transmission operators (33).

5.2. Fractional Bessel beams

In this subsection, we will consider the typical case of solution of the Maxwell equations in
the form of the fractional Bessel beams in an anisotropic medium (α = κ = 0). Such medium
has the following dielectric permittivity and magnetic permeability tensors,

ε = ε1er ⊗ er + bε1eϕ ⊗ eϕ + ε2ez ⊗ ez µ = µ1er ⊗ er + bµ1eϕ ⊗ eϕ + µ2ez ⊗ ez

where b is the anisotropy parameter, the same for ε and µ. For each ν there are a couple of
eigenwaves with longitudinal wavenumbers

β1 =
√

k2bε1µ1 − µ1q2/µ2 β2 =
√

k2bε1µ1 − ε1q2/ε2

and planar tensors

τ = µ2β1

µ1q
eiβ1zb1 ⊗ er +

kε2

q
eiβ2z(ez × b2) ⊗ eϕ

σ = kµ2

q
eiβ1zb2 ⊗ er +

ε2β2

ε1q
eiβ2z(ez × b1) ⊗ eϕ

(39)
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.

.

.

.

.

Figure 1. Radial dependence of the Bessel beam intensity for b = 0.5; 1; 3. Parameters:
ε1 = ε2 = 2.0, µ1 = µ2 = 1.2, q/k = 1, ν = 2.

where

b1 = iJ ′√
bν

(qr)er − ν

qr
J√

bν(qr)eϕ b2 = iJ ′√
bν

(qr)er − νb

qr
J√

bν(qr)eϕ. (40)

These solutions contain Bessel functions of the fractional order for each integer azimuthal
number ν. Fractional Bessel beams were obtained experimentally in the papers [5, 7, 8],
but those beams have a fractional topological charge ν. In the case under consideration the
fractional order of the beam is achieved by means of the medium parameter b. The polarization
vectors b1 and ez × b2 are not orthogonal and, in general, cannot be written as a linear
combination of beam polarizations in an isotropic medium with constant coefficients. That
is why we should apply continuity conditions (30) at the interface between the considered
anisotropic medium and the isotropic one. So, the introduced reflection and transmission
operators (33) can be used for beams in the media with the same anisotropy parameters b or
zero azimuthal number ν. Polarization and energy properties of the fractional Bessel beams
are investigated below.

In experiments the detector measures the time-averaged energy characteristics. The
intensity of the electromagnetic wave is the averaged value of the Poynting vector normal to
the detector surface. For the cylindrical beams the intensity is equal to Sz. The averaged value
of the Poynting vector takes the following form for each eigenwave (TE and TM, respectively):

S1 = c

8π

kµ2|c1|2
q

(
µ2β1

µ1q

(
J ′2√

bν
+

ν2b

q2r2
J 2√

bν

)
ez +

νb

qr
J 2√

bν
eϕ

)

S2 = c

8π

kε2|c2|2
q

(
ε2β2

ε1q

(
J ′2√

bν
+

ν2b

q2r2
J 2√

bν

)
ez +

νb

qr
J 2√

bν
eϕ

)
.

(41)

The energy flux (41) has azimuthal and longitudinal components. The existence of only
the azimuthal component in the transverse intensity leads to the closure of the lines of transverse
intensity and confirms the diffraction-free nature of the beam. The radial dependence of the
beam intensity is shown in figure 1. When the parameter b increases, the intensity maxima shift
to the region of large radial coordinates r and the rings become wider. It is the consequence
of the increase of the Bessel function order

√
bν. For integer values of the order (for example,

when b is equal to the square of the integer number) the beam characteristics do not change
qualitatively.



1532 A V Novitsky and L M Barkovsky

(a)

(d)

(b)

(e)

(g) (h) (i)

( f )

(c)

Figure 2. Magnetic field vector distribution ((a), (b), (c)), instantaneous energy flux distribution
Sz ((d), (e), (f )) and their overlay ((g), (h), (i)) for Bessel beams with polarizations ((a), (d), (g))
c1 ≡ aer = 1, c2 ≡ aeϕ = 0; ((b), (e), (h)) c1 = 0, c2 = 1; ((c), (f ), (i)) c1 = 1, c2 = 1. Here
ε1 = ε2 = 2.0, µ1 = µ2 = 1.2, q/k = 1, ν = 2, b = 3, vector a determines the initial field (see
formula (18)).

Further, we will consider the magnetic field vector distribution, which is determined by
the tensor τ . Such instantaneous field distribution and instantaneous energy flux distribution
Sz = (c/4π)[Re(E) × Re(H)]ez are given in figure 2. The picture overlay is shown there,
too. We see that the structure of the instantaneous intensity has a symmetrical form and is
repeated in the angle π/2 which is determined by the azimuthal number ν = 2. Therefore, for
any parameter b and fixed polarization the energy flux distribution is qualitatively the same.
One can easily note that for some values of the azimuth ϕ the magnetic field vectors with
different polarizations (a) and (b) become orthogonal, although it is not true in the general
case. The fact is that we calculate the real field values and hence we can obtain the orthogonal
polarizations, when the scalar product of complex fields becomes imaginary. Exactly this
case is realized for ϕ = πm/4, where m is an integer number. In these directions the most
bright energy regions are situated. The centres of the divergent and converging lines of the
magnetic field, as well as the centres of the circular lines of force, are situated in the areas
of low intensity with azimuths ϕ = π/4 + πm/2. In figure 2(g), it is shown that the centres
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of the divergent and converging lines alternate and magnetic field polarizations in adjacent
bright regions are oppositely directed. One can say the same for the beam in figure 2(h). As
regards the intensity, the more bright regions are those, in which the magnetic field vectors are
directed along the radius. Increasing the anisotropy parameter b we can achieve the increase
of the scale of the energy flux distribution. For the eigenwave superposition the polarization
vectors rotate creating a more complex spiral structure. The main behaviour of the field lines
remains; for instance, the magnetic field vectors of the adjacent bright regions are directed
oppositely, too.

5.3. Cylindrical beams

In this subsection, we consider the cylindrically symmetric beams whose solutions cannot
be written using only the Bessel functions. For example, such waves appear in the medium
(α = κ = 0)

ε = ε1Iz + ε2ez ⊗ ez + b1ε1(er ⊗ ez + ez ⊗ er )

µ = µ1Iz + µ2ez ⊗ ez + b1µ1(er ⊗ ez + ez ⊗ er )
(42)

where b1 is a constant parameter. The transverse electric and magnetic field components of
the beam are determined by the tensors τ and σ :

τ = eiβ1(z−b1r)
β1a1

q
d1 ⊗ er + eiβ2(z−b1r)

kε1a2

q
(ez × b) ⊗ eϕ

σ = eiβ1(z−b1r)
kµ1a1

q
b ⊗ er + eiβ2(z−b1r)

β2a2

q
(ez × d2) ⊗ eϕ

(43)

where b is the vector (36),

d1 = b − b1q

β1a1
Jν(qr)er d2 = b − b1q

β2a2
Jν(qr)er

a1 = µ2/µ1 − b2
1 a2 = ε2/ε1 − b2

1.

The longitudinal wavenumbers of TE and TM waves have the form

β1 =
√

k2ε1µ1 − q2/a1 β2 =
√

k2ε1µ1 − q2/a2. (44)

The exponent indicates the variation of the beam phase not only in longitudinal and
azimuthal directions, but also in the radial. At the interface with an isotropic medium one
should use the field continuity conditions (30), because one of the solutions contains the factor
exp(−ib1βr), while another solution does not. The eigenwave polarization vectors are not
orthogonal, which is caused by the anisotropy b1.

The energy flux for both TE and TM waves has two components (longitudinal and
azimuthal) and takes the form (41), if in this formula µ2 and ε2 are replaced by µ2 − b2

1µ1

and ε2 − b2
1ε1, respectively. The direction of the azimuthal energy flux can be varied into

the opposite one, if the signs of the medium parameters a1 and a2 are changed. The same
result can be obtained for an evanescent wave. The evanescent wave is characterized by the
imaginary propagation constant β1,2 = iβ ′

1,2, the energy flux for each eigenwave taking the
form

〈S1〉 = c

8π
e−2β ′

1(z−b1r)
kνµ1a1|c1|2

q2r
J 2

ν (qr)eϕ

〈S2〉 = c

8π
e−2β ′

2(z−b1r)
kνε1a2|c2|2

q2r
J 2

ν (qr)eϕ.

(45)
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(a) (b) (c)

Figure 3. Wave front of the cylindrical beam in medium (42) for parameter b1 = −3 and
topological charge (a) ν = 0, (b) ν = 1, (c) ν = 3.

The summand 2b1β
′r in the exponent argument is of great importance. During the wave

propagation along the z axis the wave amplitude exponentially vanishes. At the same time,
the radial exponential factor may both decrease (for b1 < 0) and increase (for b1 > 0) the
beam energy flux. The second case gives infinite fields for r = ∞ and cannot be realized. On
the other hand, there are no beams of infinite radius. For a beam of finite size (for example, in
the fibre) such amplitude rise for large r is possible. From (44) it follows that for a1,2 < 0 the
longitudinal wavenumber is always the real value and there are no evanescent waves for any
radial wavenumber q. The evanescent waves appear only for |b1| < µ2/µ1 and |b1| < ε2/ε1.

Further, we will obtain the electric and magnetic field strengths in the paraxial
approximation. For the sake of simplicity, we assume ε1 = ε2 = ε, µ1 = µ2 = µ (therefore,
β1 = β2 = β). In the paraxial approximation the electromagnetic field of the cylindrical beam
becomes transversal and can be determined from (43) at q → 0:

H = exp(iβz − ib1βr + i(ν − 1)ϕ)
(
1 − b2

1

)
(iβc1 + kεc2)Jν−1(qr)e+

E = exp(iβz − ib1βr + i(ν − 1)ϕ)
(
1 − b2

1

)
(iβc2 − kµc1)Jν−1(qr)e+

(46)

where e+ = (ex + iey)/
√

2. We see that the beam polarization in the paraxial approximation
is the circular one. In essence, such a solution describes a complex scalar wave. The nth
order beam corresponds to the solution for ν = n + 1. Hence, the scalar wave can be written
in the form ψ = exp(iβz − ib1βr + inϕ)Jn(qr)A. For n �= 0 such beam has a singularity at
the point r = 0, where the wavefunction becomes zero. Therefore, an optical vortex [23–25]
appears near this point. The vortex topological charge (dislocation strength) is defined by
circulation of the phase gradient around the singularity and is equal to the integer number
n. The topological charge determines the vortex orbital angular momentum, which is caused
by the screw wavefront structure. The main difference of the considered scalar wave ψ

from the conventional paraxial Bessel beam is connected with the phase −ib1βr . Such value
leads to the unusual equiphase surface. For ν = 0 the wavefront presents the divergent
(converging) cone. The azimuthal component of the phase results in the cone twisting. The
cone itself breaks and becomes the expanding helix when topological charge increases (see
figure 3). In a similar manner one can trace the change of the equiphase surface for different
anisotropy parameters b1. For b1 = 0 and ν �= 0 the wavefront is the helical surface, as
for a scalar Bessel beam. Nonzero anisotropy parameter leads to the untwisting of the helix.
The energy flux of the scalar wave (Poynting vector) is proportional to the phase gradient and
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equals S = J 2
n |A|2(βez − b1βer + neϕ/r). It is directed normally to the phase wavefront.

The helical structure of the phase front is caused by the azimuthal energy flux, while the
cone-shaped phase front is determined by the radial component of S.

6. Conclusion

In summary, we have presented a tensor description of the vector cylindrically symmetric
beams (including Bessel beams) which correspond to exact solutions of Maxwell’s equations
in bianisotropic media. Reflection and transmission operators used earlier for plane waves are
proved to be applicable to the cylindrical beams. We have found that to satisfy the boundary
conditions in general one needs to write the superposition of reflected and refracted waves,
each partial wave being the solution of the wave equation in the appropriate medium. We
have obtained the fractional Bessel beams with integer topological charge as solutions of the
Maxwell equations in anisotropic media. The beam fractional order is caused by the transverse
anisotropy of the medium. In this paper, we have considered cylindrical beams with the radial
dependence in the form of the product of the Bessel function and the exponent. For such
beams the anisotropy can vary the direction of the azimuthal energy flux and determines the
equiphase surface in the form of the divergent (converging) helix.

We believe that the results obtained can be applied for creating cylindrically symmetric
beams with prescribed characteristics of the intensity and polarization distributions.
Theoretical solutions (46) can prove to be useful for optically manipulating microparticles
and atoms. The energy flux of the beams has the radial component which gathers particles at
centre r = 0 or shifts them out of centre depending on sign of the parameter b1.

Generally speaking, there are bianisotropic media, cylindrical waves in which are
expressed using the Laguerre polynomials. Such beams propagate in anisotropic media,
for which both matrices P and Q in equation (10) have the diagonal form. However, this will
be the subject of further investigation.
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